14,654 research outputs found

    Wavevector-dependent spin filtering and spin transport through magnetic barriers in graphene

    Get PDF
    We study the spin-resolved transport through magnetic nanostructures in monolayer and bilayer graphene. We take into account both the orbital effect of the inhomogeneous perpendicular magnetic field as well as the in-plane spin splitting due to the Zeeman interaction and to the exchange coupling possibly induced by the proximity of a ferromagnetic insulator. We find that a single barrier exhibits a wavevector-dependent spin filtering effect at energies close to the transmission threshold. This effect is significantly enhanced in a resonant double barrier configuration, where the spin polarization of the outgoing current can be increased up to 100% by increasing the distance between the barriers

    Effective Sample Size for Importance Sampling based on discrepancy measures

    Full text link
    The Effective Sample Size (ESS) is an important measure of efficiency of Monte Carlo methods such as Markov Chain Monte Carlo (MCMC) and Importance Sampling (IS) techniques. In the IS context, an approximation ESS^\widehat{ESS} of the theoretical ESS definition is widely applied, involving the inverse of the sum of the squares of the normalized importance weights. This formula, ESS^\widehat{ESS}, has become an essential piece within Sequential Monte Carlo (SMC) methods, to assess the convenience of a resampling step. From another perspective, the expression ESS^\widehat{ESS} is related to the Euclidean distance between the probability mass described by the normalized weights and the discrete uniform probability mass function (pmf). In this work, we derive other possible ESS functions based on different discrepancy measures between these two pmfs. Several examples are provided involving, for instance, the geometric mean of the weights, the discrete entropy (including theperplexity measure, already proposed in literature) and the Gini coefficient among others. We list five theoretical requirements which a generic ESS function should satisfy, allowing us to classify different ESS measures. We also compare the most promising ones by means of numerical simulations

    Magnetic confinement of massless Dirac fermions in graphene

    Get PDF
    Due to Klein tunneling, electrostatic potentials are unable to confine Dirac electrons. We show that it is possible to confine massless Dirac fermions in a monolayer graphene sheet by inhomogeneous magnetic fields. This allows one to design mesoscopic structures in graphene by magnetic barriers, e.g. quantum dots or quantum point contacts.Comment: 4 pages, 3 figures, version to appear in PR

    Group Importance Sampling for Particle Filtering and MCMC

    Full text link
    Bayesian methods and their implementations by means of sophisticated Monte Carlo techniques have become very popular in signal processing over the last years. Importance Sampling (IS) is a well-known Monte Carlo technique that approximates integrals involving a posterior distribution by means of weighted samples. In this work, we study the assignation of a single weighted sample which compresses the information contained in a population of weighted samples. Part of the theory that we present as Group Importance Sampling (GIS) has been employed implicitly in different works in the literature. The provided analysis yields several theoretical and practical consequences. For instance, we discuss the application of GIS into the Sequential Importance Resampling framework and show that Independent Multiple Try Metropolis schemes can be interpreted as a standard Metropolis-Hastings algorithm, following the GIS approach. We also introduce two novel Markov Chain Monte Carlo (MCMC) techniques based on GIS. The first one, named Group Metropolis Sampling method, produces a Markov chain of sets of weighted samples. All these sets are then employed for obtaining a unique global estimator. The second one is the Distributed Particle Metropolis-Hastings technique, where different parallel particle filters are jointly used to drive an MCMC algorithm. Different resampled trajectories are compared and then tested with a proper acceptance probability. The novel schemes are tested in different numerical experiments such as learning the hyperparameters of Gaussian Processes, two localization problems in a wireless sensor network (with synthetic and real data) and the tracking of vegetation parameters given satellite observations, where they are compared with several benchmark Monte Carlo techniques. Three illustrative Matlab demos are also provided.Comment: To appear in Digital Signal Processing. Related Matlab demos are provided at https://github.com/lukafree/GIS.gi

    Parallel Metropolis chains with cooperative adaptation

    Get PDF
    Monte Carlo methods, such as Markov chain Monte Carlo (MCMC) algorithms, have become very popular in signal processing over the last years. In this work, we introduce a novel MCMC scheme where parallel MCMC chains interact, adapting cooperatively the parameters of their proposal functions. Furthermore, the novel algorithm distributes the computational effort adaptively, rewarding the chains which are providing better performance and, possibly even stopping other ones. These extinct chains can be reactivated if the algorithm considers necessary. Numerical simulations shows the benefits of the novel scheme

    Topology-Induced Inverse Phase Transitions

    Full text link
    Inverse phase transitions are striking phenomena in which an apparently more ordered state disorders under cooling. This behavior can naturally emerge in tricritical systems on heterogeneous networks and it is strongly enhanced by the presence of disassortative degree correlations. We show it both analytically and numerically, providing also a microscopic interpretation of inverse transitions in terms of freezing of sparse subgraphs and coupling renormalization.Comment: 4 pages, 4 figure
    • …
    corecore